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Abstract
Differential privacy (DP) has become a standard approach for com-

puting privacy-preserving statistics. However, in interactive set-

tings, the observable runtime of DP queries can inadvertently leak

sensitive information, violating privacy guarantees. Prior work has

shown that timing side channels can undermine DP in specific

settings. In this work, we show that popular libraries for imple-

menting differential privacy, including diffprivlib, OpenDP, and

PyDP, frequently introduce such timing side channels, leading to

measurable privacy degradation. Our analysis reveals timing vul-

nerabilities not only within commonly used DP mechanisms (e.g.,

private sums, counts, means, and selection) but also in commonly

used pre-processing steps such as filtering and sorting. We show

that these seemingly innocuous operations frequently exhibit run-

times that are sensitive not only to the presence of an individual’s

data in the input but also to the ordering of the input data.

Several of the discovered timing side channels arise from pro-

grams whose runtimes depend on the size of the input dataset. The
distinction between whether the dataset size is considered private

or public information corresponds to bounded versus unbounded
DP. We show that mechanisms satisfying unbounded DP with re-

spect to their output distributions often trivially reveal their input

size through their runtime distributions. We give several examples

of practical attacks that can be used to re-identify individuals in a

dataset given such a timing side channel.

Finally, we propose an empirical auditing technique for detecting

timing side-channel vulnerabilities in DP implementations. Our au-

diting algorithm provides a lower bound on privacy loss when both

the program’s output and runtime are observable to an adversary.

Using our auditing framework, we are able to quantify conservative

bounds on the privacy leakage of these mechanisms when runtimes

are observable to an adversary.
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1 Introduction
Differential privacy (DP) [11] is becoming more widely used for

privacy-preserving data analysis. A differentially private mecha-

nism has the property that its output is insensitive to the presence

or absence of any single person’s data in the input. This guarantee

is often achieved by adding carefully tailored noise to the mecha-

nism’s output, ensuring that the output distribution is insensitive

to whether a particular individual’s data is included in the analysis.

Unfortunately, the strong theoretical guarantees of DP algo-

rithms are often undermined by weaknesses in their implemen-
tations [4, 9, 14, 17, 22]. One such class of weaknesses are timing

side channels that emerge from the execution time of the DP al-

gorithm. For example, even if the algorithm achieves DP with re-

spect to its output, the act of computing that output may involve

data-dependent branches; the execution (or lack of execution) of

conditional code paths will impact the algorithm’s running time,

potentially leaking information about the sensitive input to an ob-

server. Exploiting this timing information is commonly known as

a timing attack and has been used in several high-profile attacks

on other domains, such as cryptography, over the past couple of

decades [1, 6, 7, 18, 19, 27, 31].

A particularly egregious example of timing side channels is one

discovered by Haeberlen, Pierce, and Narayan [14] on the PINQ DP

database system [21]. PINQ supports arbitrary user-defined queries

which can contain logic like the following:

def user_query(dataset):

if "Bob" in dataset:

sleep (1000)

The runtime of such a query trivially leakswhether the input dataset

contains the targeted user, violating differential privacy. Restricting

user-defined queries (and forcing the DP system to use constant-

time algorithms for scanning the database) will eliminate some

timing side channels, but others can remain. For instance, timing

side channels also appear in the samplers used by many DP algo-

rithms. This was highlighted by Jin, McMurtry, Rubinstein, and

Ohrimenko [17], who showed that implementations of the Discrete

Laplace and Discrete Gaussian samplers are vulnerable to side chan-

nel attacks. In particular, these attacks leveraged the fact that the

runtime of the samplers is strongly correlated with the amplitudes

of the outputted samples [17]. If the sampled value is used to noise

a mechanism’s output for privacy, an attacker can infer the sampled
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value by analyzing the mechanism’s runtime, and strip away the

noise from the output to reveal the underlying private value.

Beyond the known issueswith samplers and user-defined queries,

the scope of timing side channels in DP implementations remains

largely unexplored. Given that DP systems are intended to handle

large datasets and execute numerous data-dependent operations,

one may reasonably anticipate widespread timing vulnerabilities.

Nevertheless, it remains unclear whether observing such timing

variations leads to substantial degradation of privacy guarantees in

practice.

1.1 Overview and Contributions
To this end, we systematically examine timing side-channel attacks

across various programming frameworks for differential privacy,

including diffprivlib [15], PyDP [25], and OpenDP [12, 30]. These

libraries provide modular building blocks that implement core DP

functionalities, such as chaining together dataset transformations
(e.g., filtering rows according to some predicate, imputing dataset

entries, computing sums and averages, etc.), as well as randomized

measurements (e.g., adding Laplace or Gaussian noise) that provide

DP guarantees on the program’s output. We give more background

on DP programming frameworks, as well as transformations and

measurements, in Section 2.

We are able to demonstrate successful timing attacks across the

various DP implementations. We targeted functionality frequently

used in practical DP workflows, including dataset filtering, sort-

ing operations, private partition selection, and releasing aggregate

statistics such as sums and counts. Several of our attacks exploit

DP mechanisms that are intended to provide privacy guarantees

within the unbounded DP setting (§2), but leak their input sizes

through their observable runtimes. The bounded DP setting as-

sumes the dataset size is public, and thus such leakage would not

be problematic. However, in the unbounded DP setting, dataset size

is sensitive, and leaking it can create a domain mismatch: dataset

transformations that are assumed to be chained with an unbounded

DP mechanism effectively become chained with a bounded DP

mechanism. To see why this poses a problem, consider the 𝜀-DP

mechanism illustrated in Figure 1. The mechanism uses a filtering

transformation 𝑇
Filt

to remove rows from the dataset that match

a given criteria (e.g., rows where the age attribute is < 30). The

filtering transformation is then chained with a summation trans-

formation 𝑇Sum that creates a non-private sum over some attribute

of interest. Finally, the 𝑇Sum transformation is chained with a DP

Laplace measurement𝑀Lap to release a DP sum over the sensitive

attribute for individuals in the dataset who are younger than 30.

In this setting, it is critical that the program𝑀Lap ◦𝑇Sum achieves

DP with respect to the unbounded setting, otherwise the chained

mechanism𝑀Lap ◦𝑇Sum ◦𝑇
Filt

directly reveals the number of indi-

viduals in the dataset that are younger than 30 (since the input size

to𝑀Lap ◦𝑇Sum would be considered public).

The above vulnerability consistently arises throughout our anal-

ysis, and we give a practical attack on the described filtering mecha-

nism in Section 4.4. This demonstrates that leaking just the dataset

size through timing side channels can result in severe privacy at-

tacks when those mechanisms are chained together to create more

complex functionalities.

Another key observation is that many DP mechanisms assume

their inputs are unordered multisets of items (e.g., datasets con-

sidered as unordered collections of elements from a row domain).

However, the runtimes of many DP algorithms are often influ-

enced by the ordering of their inputs. For instance, algorithms that

perform an initial sort (see Section 4.1) can exhibit easily distin-

guishable runtime distributions on datasets that differ only in their

ordering. We demonstrate this effect explicitly in the DP trimmed

mean algorithm (§4.1), which first sorts its input dataset, and fur-

ther show how such ordering-dependent timing leakages can be

extended to enable membership inference attacks. This insight sug-

gests that developers should consider ordered input metrics when

reasoning about timing privacy. Using unordered dataset metrics

has led to widespread under-estimation of global sensitivity in DP

libraries [9], and such issues may also arise if one is not careful

when reasoning about timing attack defenses.

While the existence of the discovered timing side channels is not

entirely unexpected (since the libraries do not claim to prevent tim-

ing attacks
1
), what is surprising is the pervasiveness of these side

channels throughout the DP libraries. As currently implemented,

many DP mechanisms could be exploited by an adversary with

access to their runtime measurements. In an interactive query sys-

tem, obtaining these measurements could be as simple as recording

the time between sending a request and receiving a response. To

better assess the risk posed by timing side channels, we propose

an auditing algorithm to analyze the joint distribution of a mech-

anism’s output and runtime (§5). Our algorithm is an application

of the general statistical auditing method proposed by Jagielski,

Ullman, and Oprea [16], and establishes an empirical lower bound

on the privacy parameters when both the output and runtime are

observable. Using our auditing algorithm, we demonstrate that

several of our timing attacks can lead to severe privacy degrada-

tion in practical settings. These findings suggest that DP libraries

should prioritize timing attack mitigations before deploying DP in

interactive settings.

We summarize our contributions as follows:

• We investigate timing side channels in the PyDP, diffprivlib,

and OpenDP libraries, discovering timing vulnerabilities

across a range of widely-used mechanisms (§4). We find

that seemingly innocuous data operations—such as filtering,

sorting, and multiplication by a constant—can introduce se-

vere timing side channel vulnerabilities that are observable

in real-world network environments.

• We observe that implementations of unbounded DP mech-

anisms often trivially reveal their input size through their

runtime distributions. Unfortunately, in many settings, re-

vealing the program’s input size can be leveraged to perform

more severe privacy attacks such as membership inference.

In Section 6, we provide a detailed discussion on mitigat-

ing such attacks and examine the limitations of standard

defenses, such as enforcing constant-time execution.

• We provide an auditing algorithm for assessing the risk of

timing attacks on DP implementations (§5), and connect

this auditing algorithm to recent definitional frameworks

for jointly output/timing-private DP programs [5, 28].

1
In fact, both OpenDP and PyDP explicitly indicate that they do not protect against

timing attacks.
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Figure 1: An example filtered DP summation program within the OpenDP programming framework. The program uses a
filtering transformation𝑇Filt to remove rows from the dataset whose age attribute is < 30 to produce a new filtered dataset. The
filtered dataset is then passed as input via chaining to a 𝑇Sum transformation that outputs the sum 𝑠 over a sensitive bit column
on the filtered dataset. Finally, the sum is passed as input to a Laplace measurement𝑀Lap that adds appropriately scaled noise
to produce a 𝜀-DP sum. We give an attack on such a mechanism in Section 4.4.

We emphasize that the objective of this paper is not to conduct

a comprehensive audit of timing attacks in existing DP libraries.

Rather, our goal is to broadly investigate the landscape of timing

attacks on differential privacy implementations, extending beyond

the well-known attacks on user-defined queries and sampling mech-

anisms. Additionally, we aim to enhance our understanding of how

these timing attacks impact privacy guarantees in practice, an area

that remains relatively underexplored.

2 Background
Throughout this paper, we let datasets be a vector𝑋 = [𝑥1, 𝑥2, . . . , 𝑥𝑛]
of elements from some data domain D, i.e., 𝑋 ∈ X = ∪𝑛≥0D𝑛

. We

typically consider each element (row) of the dataset to correspond

to a single individual’s data. We will use |𝑋 | to denote the size of
the dataset and define ℎ𝑋 (𝑧) to be the number of occurrences of

the element 𝑧 in dataset 𝑋 .

2.1 Dataset Metrics
We now review common dataset distance metrics used by imple-

menters of differential privacy.

Definition 1 (Change-OneAdjacency). We say that two equally-
sized datasets 𝑋 and 𝑋 ′ are adjacent with respect to the change-one
distance metric if ∑︁

𝑧∈D
ℎ𝑋 (𝑧 )>ℎ𝑋 ′ (𝑧 )

|ℎ𝑋 (𝑧) − ℎ𝑋 ′ (𝑧) | = 1

We use 𝑑CO (𝑋,𝑋 ′) to indicate the change-one distance between
datasets 𝑋 and 𝑋 ′

.

Definition 2 (Symmetric Adjacency). We say that two datasets
𝑋 and 𝑋 ′ are adjacent with respect to the symmetric distance metric
if ∑︁

𝑧∈D
|ℎ𝑋 (𝑧) − ℎ𝑋 ′ (𝑧) | = 1

We use 𝑑Sym (𝑋,𝑋 ′) to indicate the symmetric distance between

datasets 𝑋 and 𝑋 ′
.

The choice of adjacency has implications for which aspects of the

dataset are public. For example, the change-one notion of adjacency

assumes that the dataset size is public; two equally-sized datasets 𝑋

and 𝑋 ′
are adjacent if they differ only by a single row. In contrast,

the symmetric adjacency notion says that 𝑋 can be transformed

into 𝑋 ′
by adding or removing a single row; thus, the symmetric

distance metric implicitly assumes that the dataset size is private.

When we use the change-one adjacency metric, we say that we

are operating in the bounded model. When we use the symmetric

adjacency metric, we say that we are operating in the unbounded
model.

Both change-one and symmetric adjacency are unordered notions
of adjacency. However, many algorithms have runtimes that are

highly sensitive to the order of their input data. Thus, we also

consider the ordered analogs of the change-one and symmetric

adjacency metrics.

Definition 3 (Hamming Adjacency). We say that two equally-
sized datasets 𝑋 and 𝑋 ′ are adjacent with respect to the Hamming
distance metric if there exists an index 𝑖 such that 𝑥𝑖 ≠ 𝑥 ′

𝑖
and 𝑥 𝑗 = 𝑥 ′

𝑗

for all 𝑗 ≠ 𝑖 .

We use 𝑑Ham (𝑋,𝑋 ′) to indicate the Hamming distance between

datasets 𝑋 and 𝑋 ′
.

Definition 4 (Insert-Delete Adjacency). We say that datasets
𝑋 = [𝑥1, . . . , 𝑥𝑛] and 𝑋 ′ = [𝑥 ′

1
, . . . , 𝑥 ′

𝑛+1] are adjacent with respect
to the insert-delete distance metric if 𝑋 ′ can be obtained from 𝑋 by
inserting a single element 𝑥 ′

𝑖
at position 𝑖 or if 𝑋 can be obtained from

𝑋 ′ by deleting a single element 𝑥 ′
𝑖
at position 𝑖 .

We use 𝑑ID (𝑋,𝑋 ′) to indicate the insert-delete distance between
datasets 𝑋 and 𝑋 ′

.

Both Hamming adjacency and change-one adjacency correspond

to bounded DP, where the dataset size is considered public infor-

mation. Conversely, both insert-delete adjacency and symmetric

adjacency allow for datasets to differ by the presence or absence

of an element, and therefore correspond to unbounded DP, where

dataset size is considered private and must be protected by DP.
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2.2 Differential Privacy
We now review the definition of differential privacy.

Definition 5 (Differential Privacy [11]). A mechanism𝑀 :

X → Y is (𝜀, 𝛿)-differentially private if for all adjacent databases
𝑋,𝑋 ′ ∈ X and all 𝑆 ⊆ Y:

Pr[𝑀 (𝑋 ) ∈ 𝑆] ≤ 𝑒𝜀 · Pr[𝑀 (𝑋 ′) ∈ 𝑆] + 𝛿

When 𝛿 = 0, we say that 𝑀 achieves pure differential privacy.
Intuitively, differential privacy guarantees that the algorithm’s out-

put distributions on adjacent datasets will be “close” (where “close”

is determined by the parameters 𝜀 and 𝛿). This gives privacy to in-

dividuals by ensuring that the algorithm’s output is essentially the

same regardless of whether their data is included. The definition,

however, does not capture the fact that the algorithm’s runtime

may vary greatly on adjacent datasets.

To account for runtime, recent theoretical work has defined

programs that are jointly output/timing DP (JOT-DP) [5, 28]. These

definitions ask that the joint random variable of the program’s

output and runtime achieve differential privacy.

Definition 6 (Joint Output/Timing Privacy [5, 28]). A pro-
gram 𝑃 : X×E → Y×E is (𝜀, 𝛿)-JOT-DP if for all adjacent datasets
𝑋,𝑋 ′ ∈ X, all input-compatible execution environments env, env′,
and all 𝑂 ⊆ Y × T

𝑃𝑟 [(𝑌,𝑇 ) ∈ 𝑂] ≤ 𝑒𝜀 · Pr[(𝑌 ′,𝑇 ′) ∈ 𝑂] + 𝛿

where 𝑌 = 𝑃 (𝑋, env), 𝑌 ′ = 𝑃 (𝑋 ′, env′), 𝑇 = 𝑇𝑃 (𝑋, env) and 𝑇 ′ =
𝑇𝑃 (𝑋 ′, env′).

We use the notation 𝑇𝑃 (𝑋, env) to indicate the runtime of pro-

gram 𝑃 on input 𝑋 and in execution environment env. The above
definition is effectively the standard definition of DP applied to

the joint random variable of the program’s output and runtime.

Note, however, that the condition of DP must hold over all (input-
compatible)

2
execution environments. This distinction is important

since successive queries can alter the execution environment that

introduce new timing side channels. We define the execution envi-

ronment as encompassing every aspect of the computational setting

that may affect the program’s runtime on a given input. Specifi-

cally, in our setting, the execution environment includes concurrent

processes running on the same system, network jitter and latency

between the adversary issuing the query and the endpoint executing

the query, and all relevant microarchitectural characteristics of the

machine executing the program (e.g., processor cache states, specu-

lative execution behaviors, branch predictors, memory hierarchy

states). In practice, the complexity of the execution environment

can vary considerably: it can be highly intricate, encompassing a

large variety of microarchitectural details and nondeterministic

concurrent behavior, or it can be substantially simplified by tightly

controlling the computational environment, for example, by dis-

abling speculative execution, using a minimalist instruction set

architecture (such as a reduced subset of the x86 ISA), eliminating

concurrent system processes, or running the program on dedicated

2
The notion of input-compatibility is a technical detail in the privacy definition that

accounts for the fact that some execution environments may be incompatible with a

given set of inputs. For example, the execution environment corresponding to memory

being zeroed out is incompatible with all datasets of size > 0.

Figure 2: Threat model for timing attacks on DP systems.
An adversary (analyst) adaptively issues queries 𝑞𝑖 to the DP
system. Each query is executed on the sensitive dataset, and
the system returns a noisy output. In addition, the adversary
can measure the total runtime of each query execution. We
require that the joint distribution of output/runtime pairs
satisfy joint output/timing privacy (Definition 6).

and isolated hardware. We give a more detailed discussion on the

role of the execution environment in (§5).

2.3 DP Programming Frameworks
Throughout this paper, we use terminology for DP programming

frameworks, much of which was first introduced by McSherry [21],

and further formalized by Gaboardi, Hay, and Vadhan [13]. In a

DP programming framework, DP algorithms are constructed by

chaining together sequences of transformations andmeasure-
ments. A transformation is a mapping from datasets to datasets,

such as filtering, clipping, or aggregation, which does not itself

introduce randomness but potentially modifies the sensitivity of a

given query. Measurements, on the other hand, introduce random-

ness to satisfy DP guarantees. Developers can then chain together

transformations and measurements to construct more sophisticated

DP algorithms while enabling modular reasoning about privacy

guarantees.

3 Threat Model
The standard definition of differential privacy does not account

for adversaries capable of observing the mechanism’s runtime. In

this work, we consider a threat model where both the output and

runtime of the mechanism are accessible to the adversary (Figure 2).

This threat model is relevant, for instance, in settings where an an-

alyst submits queries to a DP system that then executes the queries

on a sensitive dataset and returns the results [14, 21]. Additionally,

the threat model allows for adaptive analysts who can select their

queries based on the results of previous queries.

In each of our timing attacks (§4), an adversary issues DP queries

to a trusted server. The adversary is able to specify the privacy bud-

get expended on each query. We further assume that the adversary

can construct arbitrary queries using the operations made avail-

able by the DP library. For example, since OpenDP exposes dataset

transformations such as clamping, we allow the adversary to is-

sue arbitrary queries that make use of these transformations, and

they may apply them multiple times if they choose. The server

executes the queries on a sensitive dataset and returns the result

to the adversary, who measures the response time. Given a set of
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outputs and corresponding response times, we ask whether the

joint distribution over those output/runtime pairs satisfy JOT-DP

(Definition 6).

We note that a highly noisy channel may introduce substantial

variability into the runtime measurements, obscuring any timing

differences that the adversary might otherwise detect. In practice,

the variability in the runtime measurements can depend on the

adversary’s position in the network relative to the DP server. For

example, adversaries measuring runtime over a wide-area network

connection may face challenges such as network congestion, packet

loss, or jitter, which can introduce significant noise and mask ob-

servable timing differences. In contrast, an adversary co-located on

the same physical machine as the DP server could obtain precise

runtime measurements with minimal or no noise. Throughout this

paper, we use a fairly conservative threat model, where the adver-

sary is on a separate physical machine, but resides within the same

datacenter as the DP server.

4 Timing Attacks
In this section, we describe the various timing side-channels that

we investigated across the surveyed libraries. We evaluated our

attacks using two t2.large servers on Amazon AWS within the same

region but on different physical machines and an average ping la-

tency of 1.13ms and a standard deviation of 0.35ms. In the context

of our experiments, the execution environment therefore includes

network conditions such as latency and jitter, shared virtualized

cloud hardware resources, and the microarchitectural characteris-

tics inherent to the specific AWS instances. Thus, our execution

environment reflects a realistic networked deployment scenario

rather than an isolated or tightly controlled computational setting.

To select the libraries and specific functions targeted in our analy-

sis, we focused on those most commonly employed in DP algorithm

design and data processing workflows. In particular, we prioritized

transformations and measurements frequently used in real-world

data analysis pipelines, including filtering datasets, sorting opera-

tions, computing and releasing noisy aggregates such as sums and

counts, and performing private partition selection. These criteria

reflect realistic usage patterns in typical implementations of DP.

4.1 Attacking Sorting Transformations
We begin with a simple example that demonstrates how seem-

ingly innocuous computations have runtime distributions that, if

observed, can result in blatant violations of differential privacy.

Consider the task of sorting a dataset, which is used for example

as a subroutine in the DP trimmed mean estimator [8] and the

smooth-sensitivity median algorithm [23]. Depending on the sort-

ing algorithm, the runtime of this mechanism can be highly variable

on adjacent datasets. For example, suppose we have two datasets

𝑋 = [1, 2, . . . , 𝑛] and 𝑋 ′ = [𝑛 + 1, 𝑛, . . . , 2] that are adjacent under
the change-one distance metric, i.e., you can obtain 𝑋 ′

from 𝑋 by

changing the element 1 to 𝑛 + 1 and vice versa. Applying the simple

bubble sort algorithm on𝑋 will result in 𝑛−1 comparisons since the

dataset is already in sorted order. However, running bubble sort on

𝑋 ′
results in 𝑛 · (𝑛 − 1)/2 comparisons. Therefore, as 𝑛 grows large,

the difference between the number of comparisons (and hence the

runtime) becomes more pronounced.

To demonstrate a timing side channel arising from data sorting,

we implemented the DP trimmed mean algorithm [8]. This algo-

rithm first sorts the input dataset and then discards the bottom

and top 𝛼-fraction of values. It then applies the standard Laplace

mechanism with appropriately scaled noise to release a DP mean.

For adding Laplace noise, we relied on the diffprivlib library; how-

ever, similar functionality could be implemented using OpenDP

or PyDP. Importantly, the timing vulnerability originates from the

sorting subroutine itself and is therefore independent of the choice

of library.

To evaluate this timing vulnerability, we constructed two adja-

cent datasets: 𝑋 = [1, . . . , 20000] and 𝑋 ′ = [20001, 20000, . . . , 2],
and set the privacy parameter to 𝜀 = 0.1. A client program deployed

on an AWS server issued requests to compute the DP trimmed

mean on these datasets, and the server returned the corresponding

outputs. Despite the modest dataset size, the timing signal was

clearly detectable over the network: for 𝑋 , the average response

time was 5.3 milliseconds (𝜎 = 0.9ms), while for 𝑋 ′
, the average

was 8.0 milliseconds (𝜎 = 0.9ms). Such a timing difference is easily

detectable in practice, especially within data centers or over short

network paths, where typical round trip latencies are often under

a millisecond (e.g., AWS intra-region latencies frequently range

below 1ms). In Section 5, we quantify the resulting degradation in

privacy due to this timing side channel.

Although this sorting-based attack may appear contrived due

to its reliance on specially structured inputs, it demonstrates how

observable timing side channels arising from seemingly innocuous

data processing operations can violate DP guarantees. The attack

may not always appear to give an adversary much power, since

exploiting it requires inputs with particular structure. However, an

adversary can leverage this same side channel to perform more

targeted attacks that identify whether a given individual is in the

dataset. For example, consider an equality check transformation

maps each record in the dataset to a binary value that indicates

whether it equals a target record, e.g., checking if the record belongs

to a user Alice. If Alice’s record is present at the beginning of the

dataset, the result is a binary vector with a leading 1 followed by𝑛−1
zeros. If Alice is absent, the result is an all-zero vector. An adversary

can then issue a query that chains this equality transformation with

a measurement that performs sorting, such as the trimmed mean.

The runtimes will diverge since the all-zero vector sorts quickly,

while the presence of a 1 requires additional comparisons to place

it in order. Thus, by chaining the equality transformation with a

sorting-based measurement, an adversary can turn a weak ordering

leak into a direct membership inference attack.

Moreover, this attack highlights important subtleties surround-

ing the choice of input metric. In particular, the runtimes of many

common data processing operations, such as sorting, are inher-

ently sensitive to the ordering of the input dataset. Thus, it may

be more natural to reason about timing differences
3
with respect

to an ordered adjacency metric (indeed, discrepancies between

ordered and unordered metrics have previously caused underesti-

mation of global sensitivity in DP libraries [9]). To illustrate the

implications of metric choice, observe that under the conventional

3
Recent proposals for constructing JOT-DP programs (Definition 6) rely precisely on

this notion of timing stability, which quantifies how much a program’s runtime can

vary between neighboring datasets according to a chosen input metric.
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unordered change one adjacency metric (Definition 1), the datasets

considered earlier differ by exactly one element, so 𝑑CO (𝑋,𝑋 ′) = 1.

However, under an ordered adjacency metric such as the Hamming

distance, these same datasets appear substantially different, with

𝑑Ham (𝑋,𝑋 ′) = 20000, perhaps justifying the observed runtime dif-

ferences. Nevertheless, minimal changes in ordering can still induce

large timing variations: consider datasets 𝑋 = [1, 2, . . . , 20000] and
𝑋 ′ = [20001, 2, . . . , 20000], which differ by exactly one element in

exactly one position, making them neighbors under the Hamming

metric, i.e., 𝑑Ham (𝑋,𝑋 ′) = 1. Despite this small difference, the bub-

ble sort subroutine performs an additional 𝑂 (𝑛) comparisons on

𝑋 ′
due to the placement of the maximum element. Empirically, we

observed an average response time of 4.0 ms (𝜎 = 1.3 ms) for 𝑋 ,

increasing to 4.9 ms (𝜎 = 0.9 ms) for 𝑋 ′
, clearly demonstrating

noticeable runtime differences.

Finally, we emphasize that this sorting timing side channel also

arises in the unbounded DP setting and generally affects all com-

parison based sorting algorithms, not only bubble sort. Executing

a comparison based sorting algorithm on datasets of size 𝑛 versus

𝑛 + 1 typically results in additional comparison operations for the

larger dataset. Although distinguishing the timing difference due

to a small number of additional comparisons may be infeasible in

practice, larger differences, such as distinguishing datasets of size

𝑛 from datasets of size 𝑛 + 𝑐 for some small constant 𝑐 , could be

feasible. Such timing differences could be leveraged to violate the

group privacy guarantees of DP.

4.2 Attacking Partition Selection
In private data analysis, it is often necessary to select a set of parti-

tions from the data while preserving individual privacy. Releasing

aggregate statistics at the group level, for instance, can inadver-

tently reveal individual membership simply through the inclusion

of a group. To mitigate such privacy risks, DP libraries use private
partition selectionmechanisms, designed to identify groups within a

dataset that contain enough records to justify their inclusion while

still adhering to DP guarantees.

Both PyDP and OpenDP support private partition selection via

Laplace thresholding. At a high level, this method computes the

count of records for each potential group, adds Laplace noise scaled

to 1/𝜀 to each count, and retains only groups whose noisy counts

exceed a predefined threshold 𝜏 . Groups not meeting this noisy

threshold criterion are excluded from subsequent analyses to pro-

tect individual privacy.We give a pseudocode description of Laplace

thresholding in Figure 3.

Unfortunately, the Laplace thresholding mechanism introduces

a subtle timing side channel. In particular, the computational over-

head associated with counting, noise addition, and threshold com-

parisons scales with the number of distinct groups in the dataset.

For example, consider two neighboring datasets: 𝑋 = [𝐴,𝐴] and
𝑋 ′ = [𝐴, 𝐵]. On𝑋 , the mechanism computes and thresholds a noisy

count for group “A” only. In contrast, on 𝑋 ′
, it must additionally

compute and threshold a noisy count for group “B”. This results in

additional computation and, consequently, a longer runtime. These

runtime differences, driven purely by the number of distinct groups,

can leak sensitive information about the dataset’s composition. For

instance, if the mechanism returns only a single group but exhibits

an unusually long execution time, it may reveal that multiple other

groups were present but failed the threshold check.

hist = {}

for record in data:

cat = get_category(record)

if hist[cat] = null:

hist[cat] = 0

hist[cat] = hist[cat] + 1

for cat in list(hist.keys()):

noisy = hist[cat] + laplace(scale)

if noisy < threshold:

del hist[cat]

else:

hist[cat] = noisy

return hist

Figure 3: Laplace thresholding pseudocode. The mechanism
first builds a histogram of category counts, then adds Laplace
noise to each count and removes categories with noisy counts
below the threshold.

We experimentally validate the existence of this timing side chan-

nel in both PyDP and OpenDP. For PyDP, we utilize the PipelineDP

framework, relying on PyDP’s partition selection implementation.

Adapting PipelineDP’s official introductory example [26], we con-

ducted experiments varying the number of distinct groups in datasets

containing a fixed total of 100 records. A similar experimental pro-

tocol was applied to OpenDP’s Laplace thresholding method. Our

results, depicted in Figure 4, demonstrate a clear linear relationship

between runtime and the number of groups present within the

dataset. The 𝑥-axis represents the number of partitions filtered out

by the mechanism (specifically, groups with only a single record).

To evaluate a timing attack on the partition selection mecha-

nism, we configured the OpenDP Laplace thresholding mechanism

with privacy parameters 𝜀 = 0.01 and 𝛿 = 10
−40

. We considered

adjacent datasets of 5000 records where in 𝑋 all records belonged

to a single category and yielded one partition, while in 𝑋 ′
an addi-

tional record introduced a second partition with count 1 that was,

with high probability, removed by the thresholding step. Empiri-

cally, we observed that the average response time for 𝑋 was 3.9 ms

(𝜎 = 0.89 ms), while for 𝑋 ′
it increased to 4.3 ms (𝜎 = 1.14 ms) in

our AWS environment. In Section 5, we show that even such small,

yet detectable timing differences can lead to additional privacy loss.

Much like the attack described in §4.1, the Laplace thresholding

mechanisms fail to protect information about the size of the dataset
when their runtime distribution is observable. This leakage can be

exploited by a malicious analyst to infer the approximate number

of low-frequency groups in the data. Furthermore, even in the

bounded DP setting, enforcing constant-time execution by padding

to the worst-case runtime for inputs of length 𝑛 may be infeasible

if the set of groups is unbounded (e.g., when each record belongs

to an infinite domain such as the set of all strings). We provide

additional discussion of mitigation strategies in Section 6.
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Figure 4: Timing side channels in the private partition se-
lection mechanisms in PipelineDP (PyDP) and OpenDP. The
runtime of the mechanisms are linearly correlated with the
total number of partitions (groups) in the dataset containing
100 records.

4.3 Attacking Floating-Point Multiplication
Prior work by Andrysco et al. demonstrated that mainstream CPU

architectures exhibit timing discrepancies between subnormal and

normal floating-point operations [3], and such discrepancies could

be exploited to break DP systems that were specifically designed to

prevent timing attacks [14]. For example, onmodern CPUs, adding a

subnormal float to a normal float takesmore CPU cycles than adding

two normal floats. While the raw wall-clock difference between

these operations may only amount to tens of nanoseconds, the

difference can be amplified when the operations are performed

repetitively in loops. Andrysco et al.’s attack on the Fuzz DP system

worked as follows: the attacker issues a query that (1) transforms

the target record (if present) to a subnormal floating-point value

(e.g., “1e-308”) and (2) transforms all other records to a normal

floating-point value of 0.0. The second part of the query computes

a private sum over the transformed rows. During this summation,

Figure 5: The subnormal probe gadget. We chain together
an is_equal transformation with the sum and lipschitz_mul
transformations to create a single aggregate value. The ag-
gregate value equals the subnormal float 10−318 if the dataset
contains the target record and 0.0 otherwise.

Fuzz would either repeatedly add subnormal floats or normal floats,

creating a measurable timing signal detectable by the attacker.

Given that the OpenDP programming framework supports sub-

normal floating-point data types, we investigated whether OpenDP

exhibits similar floating-point induced timing side channels. In our

evaluation, we successfully replicated an attack similar to that of

Andrysco et al., enabling us to infer the presence of a target record

in a dataset. Notably, our approach does not depend on user-defined

functions; instead, it leverages only core transformations available

within the OpenDP library. Central to our attack is the use of a

𝑐-stable Lipschitz multiplication transformation, characterized by a

Lipschitz constant 𝑐 . This transformation multiplies the output of a

preceding transformation (such as a sum or mean) by the constant

factor 𝑐 . Its stability property ensures that bounded input variations

yield controlled and bounded output variations, precisely quantified

by the Lipschitz constant.

The attack works as follows. First, assume the attacker can con-

struct a query using any of the available transformations within the

OpenDP library (which include the is_equal, sum, and lipschitz_mul
transformations). Then the attacker defines a probe gadget made

up of the following chain of transformations (we use pseudocode

for brevity)
4
:

probe = (
is_equal(target) >>
sum >>
lipschitz_mul(1e-318)

)

The is_equals transformation converts the dataset into a vector

of 1 values (indicating that the dataset row equals target) and 0

values (indicating that the dataset row ≠ target). The sum transfor-
mation then sums the vector entries. Assuming the dataset consists

of unique rows, the sum transformation produces the aggregate

value 1 if the target record is present and 0 otherwise. Finally, the

resulting sum is multiplied by the subnormal float value 1e-318.

Thus, the probe gadget transforms the dataset into the subnormal

float 1e-318 if the target record is present, and the normal float

value 0.0 otherwise.

4
We use the » operator to indicate chaining transformations.
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Figure 6: Timing attack on OpenDP leveraging a timing side
channel in floating-point arithmetic on modern CPUs. The
experiment sets up a subnormal floating-point value if the
target record is present in the dataset, and a normal floating-
point value otherwise. The attack thenmeasures the runtime
of repeatedly multiplying the resulting value by a constant.

The attacker then chains the probe gadget with an arbitrarily

long chain of Lipschitz multiplication transformations, which we

refer to as a test gadget:

test = (
lipschitz_mul(1.0) >>
lipschitz_mul(1.0) >>
...
lipschitz_mul(1.0)

)

As described earlier, the lipschitz_mul transformation takes a

result and multiplies it by a constant (in this case, the constant 1.0).

Thus, the above test gadget performs repeated multiplications by

the floating-point value 1.0. Finally, the attacker can chain together

the probe and test gadget with a laplacemeasurement
5
to produce

a differentially private output.

mechanism = probe >> test >> laplace

Since repeated multiplications of 1.0 × 1e-318 take longer than

those of 1.0 × 0.0, we can deduce the presence of the target record

by analyzing the runtime of the entire multiplication chain.

Our evaluation, illustrated in Figure 6, highlights the runtime

discrepancies observed when the mechanism operates on a dataset

𝑋 (where the target record is absent) versus a neighboring dataset

𝑋 ′
(where the target record is present). The experimental setup in-

volved a chain consisting of 25,000 Lipschitz multiplications. When

executed on 𝑋 , the mechanism exhibited an average response time

of 11.4 ms (𝜎 = 1.20 ms), while for 𝑋 ′
the average increased to 14.1

ms (𝜎 = 1.57 ms). This 2.6 ms timing gap constitutes a measurable

side channel, allowing an adversary to distinguish between the two

datasets with high confidence. Notably, the severity of the timing

side channel increases with the length of the Lipschitz multiplica-

tion chain, amplifying the observable timing gap between adjacent

inputs.

5
The choice of the Laplace mechanism is arbitrary and the side channel may be applied

more generally to other mechanisms.

At first glance, this attack may seem contrived, as it requires

the adversary to construct a long chain of repeated multiplica-

tions. However, the attack relies solely on standard transformations

available within the OpenDP core, and such transformation chains

can plausibly arise in practice. For example, this situation could

occur when a data curator allows analysts to issue arbitrary DP

queries, even if those queries are restricted to using core transfor-

mations provided by the OpenDP library. While OpenDP could

potentially detect and restrict the construction of such chains, it

remains unclear how to comprehensively identify every transfor-

mation combination that might introduce timing side channels.

Finally, while our attack builds on the same technique introduced

by Andrysco et al., our attack is arguably more practical and severe.

The timing signal in the Fuzz attack was highly dependent on

dataset size and the position of the target record. In contrast, our

attack remains effective on datasets as small as one record and is

entirely independent of the target’s position within the dataset. As a

result, the attack can be scaled to perform full dataset enumeration

by iterating over candidate target records and testing for their

presence individually.

4.4 Attacking Filtering Transformations
Wenow detail an attack onmechanisms that process specific subsets

of their input. As an illustrative example, consider a data analyst

interfacing with a healthcare dataset that wants to compute the

number of individuals aged 30 years and younger that have a partic-

ular disease. To achieve this, the analyst might run a DP mechanism

that:

• filters the dataset to isolate rows corresponding to individu-

als under 30 years old, and

• computes a DP sum over the disease column of this filtered

subset.

Unfortunately, the computation in step (2) can have a runtime

that is highly correlated with the filtered dataset size produced by

step (1). This correlation could inadvertently reveal the number of

individuals in the dataset who are under 30 years old.

We demonstrate this timing side channel using OpenDP,
6
which

has recently added support for Polars data frames. Specifically, we

adapted example code, taken from the OpenDP documentation [24],

which applies a filtering transformation to an example microdata

dataset from the EU Labor Force Survey (we provide a pseudocode

description in Figure 7). The mechanism first filters individuals

whose usual weeklyworking hours (HWUSUAL) are below 30 and then

computes a DP sum over the HWUSUAL column for the remaining

records. We then executed the mechanism on adjacent datasets 𝑋

and𝑋 ′
, where𝑋 contains 5,000 individuals who usually work fewer

than 30 hours per week, and 𝑋 ′
contains 0 such individuals. We set

the filtering criteria to select only rows where HWUSUAL < 30 and

configured the chained DP sum with privacy parameter 𝜀 = 10
−5
.

Consequently, the filtered dataset derived from𝑋 contained exactly

5,000 records, while the filtered subset of 𝑋 ′
was empty. Therefore,

the DP summation loop executed over 5,000 rows for dataset 𝑋

and over zero rows for dataset 𝑋 ′
, resulting in a measurable timing

difference. Importantly, under a group privacy guarantee, onewould

6
Neither diffprivlib nor PyDP include built-in functionality for filtering; however, both

libraries support filtering datasets using native Python.
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filtered_df = (
dataset.lazy()
.filter(pl.col("HWUSUAL") < 30)
.collect()

)

context = dp.Context.compositor(
data=filtered_df,
...

)

query_total_hours_worked = (
context.query()
.with_columns(pl.col.HWUSUAL.cast(int).fill_null(0))
.select(pl.col.HWUSUAL.dp.sum((0, 80)))

)
query_total_hours_worked.release().collect()

Figure 7: Pseudocode for filtering a dataset and releasing a
differentially private sum on the resulting subset.

expect these datasets to be protected under 𝜀-DP with 𝜀 = 10
−5 ×

5,000 = 0.05. However, as we show in (§5.1), the observed timing

difference allows for distinguishing the presence or absence of

entire groups of individuals.

We note that in practice the timing signal from a single DP sum

may not be strong enough to exploit directly. In our experiments,

we were only able to use it to violate group privacy. However,

the signal can be amplified, for example by chaining additional

row-by-row transformations whose cost scales with dataset size.

Such amplification could strengthen the leakage enough to threaten

individual privacy, particularly if filtering criteria are chosen to

isolate small groups or even single records. The deeper issue is

that the DP sum transformation is assumed to provide guaran-

tees in the unbounded setting, where dataset size itself must be

protected, but these guarantees break down once runtimes are ob-

servable—effectively reducing the mechanism to a bounded-DP one

that leaks input size. This risk is further exacerbated in adaptive

query systems that cache intermediate results: an analyst could

filter a subset once, return and cache it, and then issue subsequent

queries whose runtimes scale with the subset size. By iterating on

filtering criteria, an adversary could exploit these timing depen-

dencies to infer subset sizes and potentially enumerate individual

records.

4.5 Attacking Randomized Response
Boolean randomized response is one of the more basic and well-

known algorithms in the DP toolkit. The technique is commonly

used in the setting of local DP where individual users each run a

query on their own data and randomize the output before sending
the private outputs to a central server for additional analysis. For

example, consider the setting in which a server polls many remote

users asking for a single bit of information, e.g., whether the in-

dividual is currently feeling sick (such a system may be used for

real-time distributed analytics to determine things like the spread

of disease throughout a community [29]). Each user runs a local

def rand_resp(x, eps , delta):

u = random () * (exp(eps) + 1)

if u > exp(eps) + delta:

x = 1 - x

return x

Figure 8: Pseudocode for the randomized response mecha-
nism implemented in diffprivlib.

randomizer on their private bit before sending the response to the

server. Unfortunately, if the runtime of the randomizer depends

on either the private data or the internal randomness used priva-

tize the output (or both), then the server may be able to learn an

individual’s true data.

We investigated the built-in implementations of randomized

response in both diffprivlib and OpenDP. The diffprivlib library

performs randomized response using the process
7
in Figure 8. At a

high level, the algorithm first samples a uniform random variable

𝑋 ∈ [0, 1]. If 𝑋 · (𝑒𝜀 + 1) > 𝑒𝜀 + 𝛿 , then the program branches and

flips the true bit. Otherwise, the true bit is returned. Note that the

branching behavior introduces additional code that only executes

depending on the outcome of the random variable 𝑋 . Therefore, if

you could learn the exact runtime of the program, along with the

DP output 𝑦, you could determine whether 𝑥 = 𝑦 or 𝑥 = 1 − 𝑦.

We experimentally verified this timing side channel in diffprivlib’s

randomized response mechanism (Figure 9). The running time of

the mechanism differed by approximately 60 nanoseconds on av-

erage due to the additional branching logic when the input bit is

flipped. While such a small timing difference could in theory violate

differential privacy, accurately measuring a nanosecond-level sig-

nal from a single sample is highly improbable. An attacker would

need to collect a large number of samples for this attack to become

practical, and in over-the-network scenarios natural sources of

noise would almost certainly mask the effect. Nonetheless, the side

channel could be eliminated entirely by adopting constant-time

programming practices.

By contrast, the OpenDP implementation of randomized re-

sponse already employs constant-time programming. Specifically, it

samples a Bernoulli random variable with probability 𝑝 in constant

time and then XORs the input bit with the result, ensuring that the

runtime is independent of the internal randomness used to privatize

the output. In our experiments, the OpenDP mechanism exhibited

constant-time behavior as intended by its developers (Figure 9).

5 Auditing Timing Attacks
In this section, we introduce an auditing technique for detecting

violations of DP when a program’s runtime is observable to an

adversary. Our method estimates lower bounds on a program’s JOT-

DP privacy parameters by analyzing the joint distribution of its

outputs and runtimes. Concretely, we extend the statistical auditing

framework of Jagielski, Ullman, and Oprea [16] to the joint random

variable formed by both the program’s output and its execution

7
We’ve modified the code for brevity.
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Figure 9: Running times of the randomized response mech-
anisms in the diffprivlib and OpenDP libraries. The mean
execution time of the randomise function in diffprivlib differs
by approximately 60 nanoseconds. The OpenDP randomized
response mechanism exhibits constant runtime behavior.

time. While the extension is conceptually straightforward, auditing

in this setting introduces a new set of challenges. First, unlike pro-

gram outputs,
8
runtimes can vary significantly across execution

environments, and empirical probabilities must often be estimated

from drifting execution environments whose precise states may

be unknown or difficult to accurately measure. Second, execution

time lies in a (nearly) continuous domain, complicating direct es-

timation of event probabilities. Fortunately, this second challenge

is easily addressed by considering events defined by a threshold

on runtime (e.g., the frequency of executions that exceed a partic-

ular timing threshold). This converts the auditing problem from

estimating probabilities over a continuous domain into a simpler

binary classification task.

Our auditing technique is adapted from that of Jagielski et al. as

follows. First, the program is executed multiple times to obtain the

8
Indeed, program outputs must be environment-independent for standard composition

theorems to hold.

sets of output/runtime pairs 𝑆 = {(𝑦𝑖 , 𝑡𝑖 )}𝑚𝑖=1 and 𝑆
′ = {(𝑦′

𝑖
, 𝑡 ′
𝑖
)}𝑚

𝑖=1
on adjacent datasets 𝑋 and 𝑋 ′

respectively. Using the output and

runtime pairs, the following empirical estimates are computed:

𝑝 =
1

𝑚
·
𝑚∑︁
𝑖=1

I{(𝑦𝑖 , 𝑡𝑖 ) ∈ 𝑂}

and similarly for 𝑋 ′

𝑝′ =
1

𝑚
·
𝑚∑︁
𝑖=1

I{(𝑦′𝑖 , 𝑡
′
𝑖 ) ∈ 𝑂}

for some set 𝑂 ⊆ Y × T . Confidence intervals 𝑝𝑢 and 𝑝ℓ are com-

puted such that the true probability Pr[(𝑃 (𝑋, env),𝑇𝑃 (𝑋, env)) ∈
𝑂] is within the intervals [𝑝ℓ , 𝑝𝑢 ] with confidence 1 − 𝛼/2 for each
bound (and similarly for 𝑝′𝑢 and 𝑝′

ℓ
). Using these statistical esti-

mates, we can establish that with probability at least 1 − 𝛼 , the

program 𝑃 does not satisfy (𝜀, 𝛿)-JOT-DP (Definition 6) for any

𝜀 < ln((𝑝ℓ − 𝛿)/𝑝′𝑢 ).
When auditing runtime measurements, the choice of the set 𝑂

directly impacts our ability to reliably detect violations of differen-

tial privacy. Since runtime values are drawn from a continuous (or

nearly continuous) domain, attempting to estimate probabilities for

overly precise or fine grained events, such as exact runtime values,

can lead to misleading differences, as certain runtime values may

appear in one dataset but not in the other. Moreover, estimating

such precise probabilities is statistically unstable because empirical

frequencies of exact continuous values typically remain at or near

zero. To avoid this issue, we select a threshold 𝑇 and define the

event 𝑂 as the set of runtime measurements either less than or

greater than 𝑇 . This effectively transforms the auditing task over

a continuous domain into a simpler binary classification problem,

where the goal is to measure how often execution times fall above

or below a chosen threshold on adjacent datasets. The threshold

is selected using a held out portion of the data to avoid bias from

data-dependent threshold selection.

In addition to the challenge of defining meaningful events, audit-

ing runtime also requires addressing the dependence of empirical

runtime probabilities on the execution environment env. Since run-
times can differ significantly across environments and since the

precise state of these environments might drift or be difficult to

accurately measure, maintaining a perfectly fixed execution envi-

ronment across multiple runs is typically impractical. Thus, our

empirical probability estimates are effectively computed over a mix-

ture of execution environments. Fortunately, Lemma 1 ensures that

fixing the execution environment is unnecessary, as the joint output

and timing privacy guarantees remain valid even when evaluated

over mixtures of potentially unknown or adversarially selected

environments.

Lemma 1. Let 𝑃 : X × E → Y × E be an (𝜀, 𝛿)-JOT-DP program.
Then for all adjacent datasets𝑋,𝑋 ′ ∈ X, all sets𝐸 = {(env𝑗 , env′𝑗 )} 𝑗∈ 𝐽
of pairs of input-compatible execution environments, all probabil-
ity distributions J over the index set 𝐽 , and all measurable sets
𝑂 ⊆ Y × T , we have

Pr

[
(𝑌,𝑇 ) ∈ 𝑂

]
≤ 𝑒𝜀 · Pr

[
(𝑌 ′,𝑇 ′) ∈ 𝑂

]
+ 𝛿

where 𝑗 ∼ J , 𝑌 = 𝑃 (𝑋, env𝑗 ), 𝑇 = 𝑇𝑃 (𝑋, env𝑗 ), 𝑌 ′ = 𝑃 (𝑋 ′, env′
𝑗
),

and 𝑇 ′ = 𝑇𝑃 (𝑋 ′, env′
𝑗
).
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Proof. Since 𝑃 is (𝜀, 𝛿)-JOT-DP, by Definition 6 for every pair

(env𝑗 , env′𝑗 ) of input-compatible execution environments and for

all adjacent 𝑋,𝑋 ′ ∈ X, we have

Pr

[
(𝑌𝑗 ,𝑇𝑗 ) ∈ 𝑂

]
≤ 𝑒𝜀 Pr

[
(𝑌 ′

𝑗 ,𝑇
′
𝑗 ) ∈ 𝑂

]
+ 𝛿

where𝑌𝑗 = 𝑃 (𝑋, env𝑗 ),𝑇𝑗 = 𝑇𝑃 (𝑋, env𝑗 ), and𝑌 ′
𝑗
and𝑇 ′

𝑗
are defined

similarly.

Let 𝐽 be a random index with distribution J . Then, by taking

the expectation over 𝑗 , we obtain

Pr

[
(𝑌,𝑇 ) ∈ 𝑂

]
=
∑︁
𝑗

Pr[𝐽 = 𝑗] · Pr
[
(𝑌𝑗 ,𝑇𝑗 ) ∈ 𝑂

]
≤
∑︁
𝑗

Pr[𝐽 = 𝑗] ·
(
𝑒𝜀 · Pr

[
(𝑌 ′

𝑗 ,𝑇
′
𝑗 ) ∈ 𝑂

]
+ 𝛿

)
= 𝑒𝜀 · Pr

[
(𝑌 ′,𝑇 ′) ∈ 𝑂

]
+ 𝛿

□

The above result indicates that if a program is (𝜀, 𝛿)-JOT-DP, its
privacy guarantees hold regardless of how the execution environ-

ment is chosen during auditing.

Improving the Empirical Estimate. We can take advantage of

the known output PMF for a DP program to improve the estimates

𝑝 and 𝑝′. Instead of estimating 𝑝 and 𝑝′ purely from empirical data,

we use the exact PMFs
9
on the outputs of the program to calculate:

𝑝 = Pr[𝑃 (𝑋, env) ∈ 𝜋1 (𝑂)] · 𝑝𝑡
𝑝′ = Pr[𝑃 (𝑋 ′, env) ∈ 𝜋1 (𝑂)] · 𝑝′𝑡

where 𝜋1 (𝑂) = {𝑦 ∈ Y : ∃𝑡 ∈ T , (𝑦, 𝑡) ∈ O} and 𝑝𝑡 and 𝑝′𝑡
are empirical estimates of the conditional runtime distributions.

Specifically, 𝑝𝑡 estimates:

Pr[𝑇𝑃 (𝑋, env) ∈ 𝜋2 (𝑂) |𝑃 (𝑋, env) ∈ 𝜋1 (𝑂)]
and 𝑝′𝑡 estimates:

Pr[𝑇𝑃 (𝑋 ′, env) ∈ 𝜋2 (𝑂) |𝑃 (𝑋 ′, env) ∈ 𝜋1 (𝑂)]
where 𝜋2 (𝑂) = {𝑡 ∈ T : ∃𝑦 ∈ Y, (𝑦, 𝑡) ∈ 𝑂}. This allows us to

incorporate known properties of the program’s output distribution

while empirically estimating the program’s conditional runtime

distribution.

The auditing framework described above is used throughout this

paper to assess whether an implementation fails to satisfy JOT-DP

for a given set of privacy parameters. We present a couple of obser-

vations. First, when the output set 𝜋1 (𝑂) covers the entire output
domain of the program, the auditing framework measures the pri-

vacy guarantees provided by the program when only its runtime

is observable. In many cases, this alone is sufficient to show that

a program does not meet the desired level of privacy, as runtime

distributions can vary significantly on neighboring inputs.

Second, we note that the program’s execution environment can

influence the observed runtimes, as captured in Definition 6. Ideally,

the environment for auditing timing attacks will closely mirror the

9
However, one might still prefer to empirically estimate the program’s output distri-

bution to detect additional vulnerabilities, such as floating-point issues [22].

resources and constraints of the production environment. Specifi-

cally, Definition 6 quantifies privacy across all pairs of execution

environments within a set E. If E is highly restricted (e.g., contains

only a single execution environment
10
) it becomes easier to obtain

a tight lower bound on the program’s privacy parameters. However,

it may be challenging to predict the exact execution environment,

particularly in interactive settings where the system may handle

multiple queries and update its internal state over time. For instance,

if a query places the system in a rare but valid architectural state

that induces a severe timing side channel, the program might fail

to achieve JOT-DP for any reasonable setting of 𝜀 and 𝛿 . Detecting

this during auditing may be unlikely if the specific architectural

state that triggers the timing side channel cannot be reproduced. In

practice, this implies that the empirical lower bound is only useful

for verifying JOT-DP properties if one can ensure that the execution

environments used in production are equivalent to those in the

audit (otherwise, the real lower bound might be significantly worse

than the bound reported by the audit). Therefore, carefully control-

ling and replicating the execution environment can be crucial in

detecting timing vulnerabilities during auditing. On the other hand,

we leverage the auditing framework to verify timing attacks; that is,
to demonstrate that a given program fails to achieve timing privacy

with high probability for a specified setting of 𝜀 and 𝛿 .

5.1 Evaluation of Attacks
We evaluate our timing attacks using the auditing algorithm de-

scribed in the previous section. Across all experiments, we observe

a measurable degradation in privacy, with the auditor returning

lower bounds 𝜀LB that often far exceed the nominal privacy pa-

rameters configured for the mechanism (see Table 1). Except for

the randomized response experiments (§4.5), all timing measure-

ments were collected over a network connection, demonstrating

that these attacks are practical in real-world settings. We emphasize

that the mechanisms were configured in the high privacy (low 𝜀)

regime where one would expect little or no information leakage

from outputs alone, yet our audits reveal that runtime effects induce

significant additional leakage. We discuss the practical implications

of this gap in the next section.

In concrete terms, the strongest leakage appeared in our audits of

the DP Trimmed Mean and Lipschitz Counting mechanisms, where

we measured effective privacy losses of 𝜀LB = 6.6 and 𝜀LB = 5.9,

despite nominal configurations of 𝜀 = 0.1 for both mechanisms,

respectively. In both cases, the structure of the algorithm allows the

side channel to become arbitrarily severe. For the trimmed mean

attack, the timing gap scales with dataset size and row ordering,

while in the Lipschitz counting attack the adversary can chain mul-

tiple gadgets to magnify the effect. Even in the partition selection,

filtered sum, and randomized response settings where the reported

𝜀LB values may appear more modest in absolute terms, the effective

privacy degradation is dramatic, often exceeding the configured

privacy parameters by an order of magnitude. As we will discuss in

the next section, such leakage could be exploited by a determined

network adversary, even if the adversary is required to collect and

average multiple timing measurements.

10
This might be achievable, for instance, by consistently executing the program from a

cleanmicro-architectural state in an isolated environment with no competing processes
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Mechanism Privacy
Parameters

Audit Lower
Bounds Over-the-Network

DP Trimmed Mean (§4.1) 𝜀 = 0.1 𝜀LB = 6.6 Yes

Partition Selection (§4.2) 𝜀 = 0.01, 𝛿 = 10
−40 𝜀LB = 0.3 Yes

Lipschitz Mult (§4.3) 𝜀 = 0.1 𝜀LB = 5.9 Yes

Filtered Sum (§4.4) 𝜀 = 0.05 𝜀LB = 1.58 Yes

Randomized Response (§4.5) 𝜀 = 0.01 𝜀LB = 1.17 No

Table 1: Summary of Timing Side-Channel Attacks. The 𝜀LB parameter indicates the lower bound on the mechanism’s privacy
parameters returned by our auditing algorithm, and were estimated with 99% confidence intervals. The “over-the-network”
column indicates whether the auditing lower bound was established by collecting measurements over the network, or directly
on the target machine. For the filtered sum mechanism, we audited against a group privacy bound of 𝜀 = 0.05. For randomized
response, we evaluated diffprivlib’s implementation.

6 Discussion
We have shown that timing side channels are pervasive across

implementations of differential privacy. Mechanisms frequently

and trivially leak sensitive information about their inputs through

observable runtime behavior, most commonly revealing the input

length. Although this leakage might initially seem harmless, our

findings demonstrate that chaining multiple transformations can

amplify seemingly minor leaks into severe privacy vulnerabilities.

Moreover, we observe that runtime distributions of DP algorithms

are often significantly influenced by the ordering of input data.

Recent work has already highlighted instances where DP libraries

underestimated global sensitivity due to ambiguities between or-

dered and unordered dataset metrics. When considering defenses

against timing attacks specifically, our analysis underscores the

necessity of adopting ordered metrics, as runtime variations can

heavily depend on data ordering even when the output remains

indistinguishable.

In practice, one challenge for an adversary is that exploiting

runtime leakage over a network often requires many repeated

measurements to overcome natural timing noise. However, this

requirement does not preclude attacks. An adversary could, for

instance, allocate only a negligible fraction of the privacy budget

to each query. In that case, the outputs themselves would be effec-

tively uninformative, but the adversary could still harvest runtime

information. By issuing a large number of such low-budget queries,

the adversary can collect the timing samples needed to reliably

exploit the side channel.

We now discuss potential mitigations against timing attacks.

Constant-TimeProgramming.A standard defense against timing

attacks is to enforce constant-time computation by padding exe-

cution to a worst-case runtime across all inputs. However, achiev-

ing truly constant-time behavior is challenging due to inherent

variability at the microarchitectural level of modern CPUs. Fur-

thermore, constant-time implementation typically requires writing

specialized code [10] or using processors that forego performance

optimizations such as speculative execution [33]. Consequently,

constant-time defenses tend to result in slower, less flexible sys-

tems, which might limit their adoption in performance-critical DP

applications.

In the unbounded setting of DP, constant-time programming

is perhaps an even more unattractive solution. In this setting, the

developer would need to choose an upper bound on dataset size and

pad execution to the worst-case runtime on inputs of that size, re-

gardless of the true size of the input dataset. This not only imposes

severe performance overhead but also undermines the scalability of

the system, since the chosen bound must accommodate even rare,

extremely large inputs.

Randomizing the Runtime. As discussed in (§7), recent theoreti-

cal frameworks address timing attacks by explicitly incorporating

runtime into the DP guarantee. Under this approach, a program

satisfies JOT-DP (Definition 6) if the joint distribution of its output

and runtime achieves differential privacy. If the program’s timing
stability is bounded, differential privacy can be enforced by adding

a carefully calibrated delay before releasing outputs [28]. Apply-

ing this theoretical framework to practical DP implementations

running on real-world hardware is a promising but challenging

future direction. Accurately quantifying timing stability in practice

will likely require a combination of static and dynamic program

analysis, and since timing stability inherently depends on hardware

specifics, bounds would need to be determined separately for each

deployment environment.

Nevertheless, this runtime-randomization approach seems es-

pecially suitable for mitigating several attacks identified in our

analysis. In particular, many of our demonstrated attacks result in

runtime differences on the order of milliseconds, suggesting that

relatively modest delays may suffice to achieve JOT-DP. Thus, ran-

domizing runtime could mitigate timing vulnerabilities without

incurring the large performance overhead typically associated with

strict constant-time programming.

Leveraging Natural Timing Variation. Program runtimes in-

herently exhibit variability from concurrent system processes, net-

work jitter, and hardware non-determinism. This natural timing

variation could help obscure sensitive timing signals. For example,

the Boolean randomized response mechanism described in (§4.5)

introduces timing signals on the order of nanoseconds that are

difficult to exploit without highly precise local measurements. In

networked scenarios, jitter typically overwhelms these signals, sig-

nificantly diminishing attack feasibility. This naturally occurring

delay closely resembles timing-private delay functions [28], and
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formalizing how natural timing variations could enhance privacy

guarantees presents an intriguing direction for future research.

Preventing Timing Signal Amplification. Several timing attacks

presented in this work rely on amplification techniques such as

chaining multiple logical operations to enhance timing signals and

facilitate more accurate measurements. Without amplification, at-

tackers typically need repeated mechanism executions to achieve

precise timing estimates. However, repeatedly querying a DP mech-

anism accumulates privacy loss through composition and may out-

weigh the informational gain of the timing attack.

Another attacker strategy involves issuing numerous queries,

each with negligible privacy budgets. For example, requesting many

responses from a Boolean randomized response mechanism with an

exceedingly small privacy budget (e.g., 𝜀 = 10
−9
) would yield near-

random outputs, yet precise aggregate timing measurements could

still reveal sensitive information. To counter such attacks, enforcing

minimum privacy-budget expenditures per query ensures each

query provides meaningful statistical output rather than merely

probing runtime. Notably, the privacy accounting modules in the

libraries we examined already implement such minimum budget

constraints.

7 Related Work
Timing side channel attacks have been extensively studied over

the past few decades within the applied cryptography and broader

security communities. Observable runtime variations have repeat-

edly undermined implementations of cryptographic primitives and

protocols previously thought to be secure. For example, seminal

work by Kocher [19] demonstrated that timing information could

be leveraged to break implementations of cryptographic algorithms

such as RSA, Diffie Hellman, and DSS. Subsequent research identi-

fied practical cache timing attacks on AES [6, 27], timing attacks

against TLS [1, 2], cache side channels including Flush+Reload [32],

and more recent microarchitectural timing attacks such as Spec-

tre [18] and Meltdown [20].

Given the impact timing side channels have had on cryptography,

it is not surprising that they have also emerged as a threat to differ-

ential privacy. Haeberlen, Pierce, and Narayan [14] demonstrated

that timing side channels could undermine the privacy guarantees

of DP systems, highlighting the need for careful system design to

control timing variations. They introduced the Fuzz DP system

specifically to protect against these side channel attacks. The Fuzz

system enables data analysts to issue arbitrary queries constructed

from constant time microqueries, each of which operates on an

individual row of the dataset, executes for a predefined constant

amount of time, and returns a default value if this time bound is ex-

ceeded. Importantly, the Fuzz system is designed specifically for the

bounded DP setting, in which the size of the dataset is considered

public knowledge. This contrasts with some of the mechanisms

discussed in this paper, which are intended to provide DP protec-

tions for the dataset size itself. Andrysco et al.[3] later identified

timing vulnerabilities even in the Fuzz system, demonstrating at-

tacks that exploited the data-dependent timing behavior of floating

point operations. More recently, Jin et al. [17] analyzed timing

side channels affecting the Discrete Laplace and Discrete Gaussian

mechanisms. They demonstrated that the runtime of the sampling

algorithms underlying these mechanisms can strongly correlate

with the magnitude of the sampled noise, potentially leaking private

information.

Recent work has also begun to investigate how we can protect

differentially private programs against timing attacks by making

the joint distribution of the output and runtime differentially pri-

vate [5, 28]. Ben Dov et al. characterized which distributions can

be sampled in a timing-safe manner, where the runtime of the sam-

pler does not leak any information about the output. Their work

also explored the extent to which pure DP mechanisms can be

made resistant to timing attacks. Ratliff and Vadhan introduced a

new definitional framework for reasoning about timing privacy,

which includes the notion of timing stability, the timing analogue

of global sensitivity. Their framework achieves timing privacy by

injecting carefully calibrated delay into a program’s execution prior

to releasing its output, ensuring that the joint distribution of the

output and runtime jointly satisfies (𝜀, 𝛿)-differential privacy. They
provided several proof of concept constructions of timing private

DP programs in the RAM and Word RAM models of computation.
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